HW Set 1 Preliminaries

Problem 1 (triangulation)

A tree is located at some location. Using east as the reference direction, you have to rotate an angle of 45° from that direction to face the tree.

You then walk due east for 20 m . At that point, you have to turn 60° from east to face the tree.
a. Use triangles to find the distance from the first location to the tree.
b. Use triangles to find the distance from the second location to the tree.
c. Write the position of the tree relative to the first location as a vector in cartesian coordinates. Use the east and north directions as axes.
d. Write the position of the tree relative to the second location as a vector in cartesian coordinates. Use the east and north directions as axes.

Problem 2 (trilateration)

A tree is located at some location. You measure that the tree is 40 m away.

You then walk due east for 20 m . At that point, the tree is 25 m away.
a. Use triangles to find the direction (angle) of the tree as measured from the east direction at the first location.
b. Use triangles to find the direction (angle) of the tree as measured from the east direction at the second location.
c. Write the position of the tree relative to the first location as a vector in cartesian coordinates. Use the east and north directions as axes.
d. Write the position of the tree relative to the second location as a vector in cartesian coordinates. Use the east and north directions as axes.

Problem 3

a. Find the conversion factor, the value (with units) that you multiply a number by, that converts a value in miles to kilometer.
b. Find the conversion factor that converts a value in kilometers to meters.
c. Find the conversion factor that converts a value in hours to seconds.
d. Use the above results to find the conversion factor that converts a value in miles per hour to meters per second.

Problem 4

a. What is the result of the following calculation to the correct number of significant digits?

$$
\frac{1.2 \times 34.5}{678.90}
$$

b. What is the result of the following calculation to the correct number of significant digits?

$$
\frac{1.23 \times 45.67}{890}
$$

