## HW Set 2 Motion

## Problem 1

You start at the position $x=-3 \mathrm{~m}$. You travel to the position $x=2 \mathrm{~m}$.
a. What is the displacement of this motion?

You start at the position $x=-3 \mathrm{~m}$. You go through a displacement of $\Delta x=+6 \mathrm{~m}$.
b. What is the final position due to this motion?

You go through a displacement of $\Delta x=-4 \mathrm{~m}$. You end up at the position $x=2 \mathrm{~m}$.
c. What was the starting position of this motion?

## Problem 2

You start at the position $x=5 \mathrm{~m}$. You travel to the position $x=-3 \mathrm{~m}$. This motion took an elapsed time of 4 s .
a. What is the average velocity of this motion?

You start at the position $x=5 \mathrm{~m}$. You travel with an average velocity of $2 \mathrm{~m} / \mathrm{s}$ and end up at the position $x=13 \mathrm{~m}$.
b. How much time does it take to go through the motion?

You start at the position $x=5 \mathrm{~m}$. You travel with an average velocity of $-3 \mathrm{~m} / \mathrm{s}$ for 4 s .
c. Where do you end up?

You travel with an average velocity of $-4 \mathrm{~m} / \mathrm{s}$ for 3 s . You end up at the position $\mathrm{x}=2 \mathrm{~m}$.
d. Where do you start?

## Problem 3

You walk in a certain direction at an average velocity of $1 \mathrm{~m} / \mathrm{s}$ for 4 seconds. You then run at the same direction at a constant velocity of $5 \mathrm{~m} / \mathrm{s}$ for another 4 seconds.
a. What is the total distance traveled?
b. What was the average velocity for the entire trip?
c. If you ran for 6 seconds instead, what was the average velocity for the entire trip then?
d. If you walked at $-2 \mathrm{~m} / \mathrm{s}$ instead (in the opposite direction), what was the average velocity for the entire trip then?

