HW Set 4 Equations of Motion

Problem 1

An object moves along the x axis with an acceleration of $+3 \mathrm{~m} / \mathrm{s}^{2}$. Its position at $\mathrm{t}=0 \mathrm{~s}$ is -10 m and its velocity at $t=0 \mathrm{~s}$ is $-3 \mathrm{~m} / \mathrm{s}$. We are looking for the position and velocity at $\mathrm{t}=4 \mathrm{~s}$.
a. Place the given values into the following table.

| the constant
 acceleration | | |
| :---: | :---: | :---: | :---: |
| initial | | |
| time | | |\quad

b. Here are the equations of motion. Which two would be best to use?

$$
\begin{array}{ll}
\Delta \vec{v}=\vec{a} \Delta t & \text { no } \Delta \vec{x} \\
\Delta \vec{x}=\vec{v}_{i} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{f} \\
\Delta \vec{x}=\vec{v}_{f} \Delta t-\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{i} \\
\Delta\left(\vec{v}^{2}\right)=2 \vec{a} \cdot \Delta \vec{x} & \text { no } \Delta t \\
\Delta \vec{x}=\frac{1}{2}\left(\vec{v}_{f}+\vec{v}_{i}\right) \Delta t & \text { no } \vec{a}
\end{array}
$$

c. What will be the velocity at $\mathrm{t}=4 \mathrm{~s}$?
d. What will be the position at $t=4 \mathrm{~s}$?
e. Fill in the entire table.

Problem 2

An object moves along the x axis with an acceleration of $-1 \mathrm{~m} / \mathrm{s}^{2}$. Its position at $\mathrm{t}=3 \mathrm{~s}$ is 5 m and its velocity at $\mathrm{t}=3 \mathrm{~s}$ is $-2 \mathrm{~m} / \mathrm{s}$. We are looking for the position and velocity at $\mathrm{t}=8 \mathrm{~s}$.
a. Place the given values into the following table.

the constant acceleration			
initial		final	
time		time	
initial			
position		final	
initial		position	
velocity		final	

b. Here are the equations of motion. Which two would be best to use?

$$
\begin{array}{ll}
\Delta \vec{v}=\vec{a} \Delta t & \text { no } \Delta \vec{x} \\
\Delta \vec{x}=\vec{v}_{i} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{f} \\
\Delta \vec{x}=\vec{v}_{f} \Delta t-\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{i} \\
\Delta\left(\vec{v}^{2}\right)=2 \vec{a} \cdot \Delta \vec{x} & \text { no } \Delta t \\
\Delta \vec{x}=\frac{1}{2}\left(\vec{v}_{f}+\vec{v}_{i}\right) \Delta t & \text { no } \vec{a}
\end{array}
$$

c. What will be the velocity at $t=8 \mathrm{~s}$?
d. What will be the position at $t=8 \mathrm{~s}$?
e. Fill in the entire table.

Problem 3

An object moves along the x axis with an acceleration of $+4 \mathrm{~m} / \mathrm{s}^{2}$. Its position at $\mathrm{t}=4 \mathrm{~s}$ is 20 m and its velocity at $t=4 \mathrm{~s}$ is $+16 \mathrm{~m} / \mathrm{s}$. We are looking for the position and velocity at $\mathrm{t}=-2 \mathrm{~s}$.
a. Place the given values into the following table.

the constant acceleration	
initial time	final time
initial position	final position
initial velocity	final velocity

b. Here are the equations of motion. Which two would be best to use?

$$
\begin{array}{ll}
\Delta \vec{v}=\vec{a} \Delta t & \text { no } \Delta \vec{x} \\
\Delta \vec{x}=\vec{v}_{i} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{f} \\
\Delta \vec{x}=\vec{v}_{f} \Delta t-\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{i} \\
\Delta\left(\vec{v}^{2}\right)=2 \vec{a} \cdot \Delta \vec{x} & \text { no } \Delta t \\
\Delta \vec{x}=\frac{1}{2}\left(\vec{v}_{f}+\vec{v}_{i}\right) \Delta t & \text { no } \vec{a}
\end{array}
$$

c. What was the velocity at $t=-2 \mathrm{~s}$?
d. What was the position at $t=-2 \mathrm{~s}$?
e. Fill in the entire table.

