HW Set 5 Equations of Motion

Problem 1

An object moves along the x axis. Its position at $t=5 \mathrm{~s}$ is +16 m and its velocity at $\mathrm{t}=5 \mathrm{~s}$ is $+8 \mathrm{~m} /$
s . At an earlier time, its position was -4 m and its velocity was $+2 \mathrm{~m} / \mathrm{s}$.
a. Place the given values into the following table.

the constant acceleration	
initial time	final time
initial position	final position
initial velocity	final velocity

b. Here are the equations of motion. Which two would be best to use?

$$
\begin{array}{ll}
\Delta \vec{v}=\vec{a} \Delta t & \text { no } \Delta \vec{x} \\
\Delta \vec{x}=\vec{v}_{i} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{f} \\
\Delta \vec{x}=\vec{v}_{f} \Delta t-\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{i} \\
\Delta\left(\vec{v}^{2}\right)=2 \vec{a} \cdot \Delta \vec{x} & \text { no } \Delta t \\
\Delta \vec{x}=\frac{1}{2}\left(\vec{v}_{f}+\vec{v}_{i}\right) \Delta t & \text { no } \vec{a}
\end{array}
$$

c. What was the earlier time?
d. What is the acceleration?
e. Fill in the entire table.

Problem 2

An object moves along the x axis with an acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. From the time $\mathrm{t}=-3 \mathrm{~s}$ to the time $\mathrm{t}=5 \mathrm{~s}$, its position went from 2 m to 18 m .
a. Place the given values into the following table.

| $\begin{array}{c}\text { the constant } \\ \text { acceleration }\end{array}$ | | |
| :---: | :---: | :---: | :---: |
| initial | | |
| time | | |\(\left.\quad \begin{array}{c}final

time\end{array}\right]\)
b. Here are the equations of motion. Which two would be best to use?

$$
\begin{array}{ll}
\Delta \vec{v}=\vec{a} \Delta t & \text { no } \Delta \vec{x} \\
\Delta \vec{x}=\vec{v}_{i} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{f} \\
\Delta \vec{x}=\vec{v}_{f} \Delta t-\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{i} \\
\Delta\left(\vec{v}^{2}\right)=2 \vec{a} \cdot \Delta \vec{x} & \text { no } \Delta t \\
\Delta \vec{x}=\frac{1}{2}\left(\vec{v}_{f}+\vec{v}_{i}\right) \Delta t & \text { no } \vec{a}
\end{array}
$$

c. What will was the velocity at $t=-3 \mathrm{~s}$?
d. What will be the velocity at $\mathrm{t}=5 \mathrm{~s}$?
e. Fill in the entire table.

Problem 3

An object moves along the x axis with an acceleration of $-3 \mathrm{~m} / \mathrm{s}^{2}$. At an earlier time, the position is 4 m and the velocity is $9 \mathrm{~m} / \mathrm{s}$. At the later time $\mathrm{t}=5 \mathrm{~s}$, the position is -20 m .
a. Place the given values into the following table.

the constant acceleration		
initial time	final time	
initial position	final position	
initial velocity	final velocity	

b. Here are the equations of motion. Which two would be best to use?

$$
\begin{array}{ll}
\Delta \vec{v}=\vec{a} \Delta t & \text { no } \Delta \vec{x} \\
\Delta \vec{x}=\vec{v}_{i} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{f} \\
\Delta \vec{x}=\vec{v}_{f} \Delta t-\frac{1}{2} \vec{a} \Delta t^{2} & \text { no } \vec{v}_{i} \\
\Delta\left(\vec{v}^{2}\right)=2 \vec{a} \cdot \Delta \vec{x} & \text { no } \Delta t \\
\Delta \vec{x}=\frac{1}{2}\left(\vec{v}_{f}+\vec{v}_{i}\right) \Delta t & \text { no } \vec{a}
\end{array}
$$

c. What was the first time?
d. What is the velocity at $\mathrm{t}=5 \mathrm{~s}$?
e. Fill in the entire table.

